Benha University - Benha Faculty of Engineering.

Electro-Mechanical Engineering Program. (Credit Hours System)

Subject: Electronic Devices and Circuits Summer Semester 2022

Subject Code: EME306 Sheet No: 1

Lecturer: Dr. Ayman Soliman Date: 16/07/2022

TA: Eng. Ahmed Nasr

REVIEW QUESTIONS

- 1. Write short notes about the following items with the aid of formulas and sketches:
 - a. Series and parallel resistor arrangements
 - b. Voltage and current dividers
 - c. Voltage and current sources
 - d. Delivered and consumed power
 - e. Materials used in electronics.
 - f. Semiconductors construction blocks (hint: P-type and n-type)
 - g. PN Junction
 - h. Forward and reverse biasing of a diode

Problems

1.1 Ohm's law relates V, I, and R for a resistor. For each of the situations following, find the missing item:

(a)
$$R = 1 \text{ k}\Omega$$
, $V = 10 \text{ V}$

(b)
$$V = 10 V, I = 1 mA$$

(c)
$$R = 10 \text{ k}\Omega$$
, $I = 10 \text{ mA}$

(a)
$$R = 1 \text{ k}\Omega$$
, $V = 10 \text{ V}$ (b) $V = 10 \text{ V}$, $I = 1 \text{ mA}$ (c) $R = 10 \text{ k}\Omega$, $I = 10 \text{ mA}$ (d) $R = 100 \Omega$, $V = 10 \text{ V}$

1.2 Ohm's law and the power law for a resistor relate V, I,R, and P, making only two variables independent. For each pair identified below, find the other two:

	V	Ι	R	P
a		10m	<mark>1k</mark>	
b	10	<mark>1m</mark>		
С	10			1
d		10m		<mark>.01</mark>
e			<mark>1k</mark>	<mark>1</mark>

1.3 If the original resistor is 10 k Ω , what is the value of the shunting resistor needed to reduce the combined value by 1%, 5%, 10%, and 50%? What is the result of shunting a 10-k Ω resistor by 1 M Ω ? By 100 k Ω ? By $10 \text{ k}\Omega?$

1.4 You are given three resistors, each of $10 \text{ k}\Omega$, and a 9-V battery whose negative terminal is connected to ground. With a voltage divider using some or all of your resistors, how many positive-voltage sources of magnitude less than 9 V can you design? List them in order, smallest first.
1.5 Design a simple current divider that will reduce the current provided to a 1-k Ω load to 20% of that available from the source.
© Dr. Ayman Soliman