Benha University - Benha Faculty of Engineering. Electro-Mechanical Engineering Program. (Credit Hours System) Subject: Electronic Devices and Circuits Summer Semester 2022

Sheet No: 1
Date: 16/07/2022
TA: Eng. Ahmed Nasr

REVIEW QUESTIONS

1. Write short notes about the following items with the aid of formulas and sketches:
a. Series and parallel resistor arrangements
b. Voltage and current dividers
c. Voltage and current sources
d. Delivered and consumed power
e. Materials used in electronics.
f. Semiconductors construction blocks (hint: P-type and n-type)
g. PN Junction
h. Forward and reverse biasing of a diode

Problems

1.1 Ohm's law relates V, I, and R for a resistor. For each of the situations following, find the missing item:
(a) $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{V}=10 \mathrm{~V}$
(b) $\mathrm{V}=10 \mathrm{~V}, \mathrm{I}=1 \mathrm{~mA}$
(c) $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{I}=10 \mathrm{~mA}$
(d) $\mathrm{R}=100 \Omega, \mathrm{~V}=10 \mathrm{~V}$
1.2 Ohm's law and the power law for a resistor relate $\mathrm{V}, \mathrm{I}, \mathrm{R}$, and P , making only two variables independent. For each pair identified below, find the other two:

	V	I	R	P
a		10 m	1 k	
b	10	1 m		
c	10			1
d		10 m		.01
e			1 k	1

1.3 If the original resistor is $10 \mathrm{k} \Omega$, what is the value of the shunting resistor needed to reduce the combined value by $1 \%, 5 \%, 10 \%$, and 50% ? What is the result of shunting a $10-\mathrm{k} \Omega$ resistor by $1 \mathrm{M} \Omega$? By $100 \mathrm{k} \Omega$? By $10 \mathrm{k} \Omega$?
1.4 You are given three resistors, each of $10 \mathrm{k} \Omega$, and a $9-\mathrm{V}$ battery whose negative terminal is connected to ground. With a voltage divider using some or all of your resistors, how many positive-voltage sources of magnitude less than 9 V can you design? List them in order, smallest first.
1.5 Design a simple current divider that will reduce the current provided to a $1-\mathrm{k} \Omega$ load to 20% of that available from the source.

